
8.1 IntroductIon

We have learnt about Relational Database
Management System (RDBMS) and purpose in the
previous chapter. There are many RDBMS such
as MySQL, Microsoft SQL Server, PostgreSQL,
Oracle, etc. that allow us to create a database
consisting of relations and to link one or more
relations for efficient querying to store, retrieve
and manipulate data on that database. In this
chapter, we will learn how to create, populate and
query database using MySQL.

In this chapter

 » Introduction
 » Structured Query

Language (SQL)
 » Data Types and

Constraints in MySQL
 » SQL for Data Definition
 » SQL for Data

Manipulation
 » SQL for Data Query
 » Data Updation and

Deletion

Introduction to
Structured Query

Language (SQL)

Chapter

8

“The most important motivation for the
research work that resulted in the relational
model was the objective of providing a sharp
and clear boundary between the logical and
physical aspects of database management.”

– E. F. Codd

Chap 8.indd 143 19-Jul-19 3:45:57 PM

Reprint 2025-26

144 InformatIcs PractIces – class XI

8.2 Structured Query Language (SQL)
One has to write application programs to access data in
case of a file system. However, for database management
systems there are special kind of programming
languages called query language that can be used to
access data from the database. The Structured Query
Language (SQL) is the most popular query language
used by major relational database management systems
such as MySQL, ORACLE, SQL Server, etc.

SQL is easy to learn as the statements comprise of
descriptive English words and are not case sensitive.
We can create and interact with a database using SQL
in an efficient and easy way. The benefit with SQL is
that we don’t have to specify how to get the data from
the database. Rather, we simply specify what is to be
retrieved, and SQL does the rest. Although called a query
language, SQL can do much more besides querying.
SQL provides statements for defining the structure of
the data, manipulating data in the database, declare
constraints and retrieve data from the database in
various ways, depending on our requirements.

In this chapter, we will learn how to create a database
using MySQL as the RDBMS software. We will create a
database called StudentAttendance (Figure 7.5) that we
had identified in the previous chapter. We will also learn
how to populate database with data, manipulate data in
that and retrieve data from the database through SQL
queries.

8.2.1 Installing MySQL
MySQL is an open source RDBMS software which can
be easily downloaded from the official website https://
dev.mysql.com/downloads. After installing MySQL,
start MySQL service. The appearance of mysql> prompt
(Figure 8.1) means that MySQL is ready for us to enter
SQL statements.

Few rules to follow while writing SQL statements in
MySQL:
• SQL is case insensitive. That means name and NAME

are same for SQL.
• Always end SQL statements with a semicolon (;).
• To enter multiline SQL statements, we don’t write

‘;’ after the first line. We put enter to continue on
next line. The prompt mysql> then changes to ‘->’,

Activity 8.1

Explore LibreOffice
Base and compare it
with MySQL

Chap 8.indd 144 19-Jul-19 3:45:57 PM

Reprint 2025-26

IntroductIon to Structured Query Language (SQL) 145

indicating that statement is continued to the next
line. After the last line, put ‘;’ and press enter.

8.3 data typeS and conStraIntS In MySQL

We know that a database consists of one or more
relations and each relation (table) is made up of attributes
(column). Each attribute has a data type. We can also
specify constraints for each attribute of a relation.

8.3.1 Data type of Attribute
Data type indicates the type of data value that an
attribute can have. The data type of an attribute decides
the operations that can be performed on the data of
that attribute. For example, arithmetic operations can
be performed on numeric data but not on character
data. Commonly used data types in MySQL are numeric
types, date and time types, and string (character and
byte) types as shown in Table 8.1.

Figure 8.1: MySQL Shell

Think and Reflect
Can you think of an
attribute for which
fixed length string is
suitable?

Table 8.1 Commonly used data types in MySQL
Data type Description

CHAR(n) Specifies character type data of length n where n could be any value from 0 to
255. CHAR is of fixed length, means, declaring CHAR (10) implies to reserve
spaces for 10 characters. If data does not have 10 characters (for example,
‘city’ has four characters), MySQL fills the remaining 6 characters with spaces
padded on the right.

VARCHAR(n) Specifies character type data of length ‘n’ where n could be any value from 0
to 65535. But unlike CHAR, VARCHAR is a variable-length data type. That is,
declaring VARCHAR (30) means a maximum of 30 characters can be stored
but the actual allocated bytes will depend on the length of entered string. So
‘city’ in VARCHAR (30) will occupy the space needed to store 4 characters only.

Activity 8.2

What are the other
data types supported in
MySQL? Are there other
variants of integer and
float data type?

Chap 8.indd 145 19-Jul-19 3:45:57 PM

Reprint 2025-26

146 InformatIcs PractIces – class XI

Think and Reflect
Which two constraints
when applied together
will produce a Primary
Key constraint?

INT INT specifies an integer value. Each INT value occupies 4 bytes of storage. The
range of values allowed in integer type are -2147483648 to 2147483647. For
values larger than that, we have to use BIGINT, which occupies 8 bytes.

FLOAT Holds numbers with decimal points. Each FLOAT value occupies 4 bytes.

DATE The DATE type is used for dates in 'YYYY-MM-DD' format. YYYY is the 4 digit
year, MM is the 2 digit month and DD is the 2 digit date. The supported range
is '1000-01-01' to '9999-12-31'.

8.3.2 Constraints
Constraints are certain types of restrictions on the data
values that an attribute can have. They are used to
ensure the accuracy and reliability of data. However, it
is not mandatory to define constraint for each attribute
of a table. Table 8.2 lists various SQL constraints.

Table 8.2 Commonly used SQL Constraints
Constraint Description

NOT NULL Ensures that a column cannot have NULL values where NULL means missing/
unknown/not applicable value.

UNIQUE Ensures that all the values in a column are distinct/unique.

DEFAULT A default value specified for the column if no value is provided.

PRIMARY KEY The column which can uniquely identify each row or record in a table.

FOREIGN KEY The column which refers to value of an attribute defined as primary key in another
table.

8.4 SQL for data defInItIon

SQL provides commands for defining the relation
schemas, modifying relation schemas and deleting
relations. These are called Data Definition Language
(DDL) through which the set of relations are specified,
including their schema, data type for each attribute, the
constraints as well as the security and access related
authorisations.

Data definition starts with the create statement. This
statement is used to create a database and its tables
(relations). Before creating a database, we should be
clear about the number of tables in the database, the
columns (attributes) in each table along with the data
type of each column. This is how we decide the relation
schema.

8.4.1 CREATE Database
To create a database, we use the CREATE DATABASE
statement as shown in the following syntax:

CREATE DATABASE databasename;

Chap 8.indd 146 19-Jul-19 3:45:57 PM

Reprint 2025-26

IntroductIon to Structured Query Language (SQL) 147

To create a database called StudentAttendance, we
will type following command at mysql prompt.

mysql> CREATE DATABASE StudentAttendance;
Query OK, 1 row affected (0.02 sec)

Note: In LINUX environment, names for database and tables
are case-sensitive whereas in WINDOWS, there is no such
differentiation. However, as a good practice, it is suggested to write
database or table name in the same letter cases that were used at
the time of their creation.

A DBMS can manage multiple databases on one
computer. Therefore, we need to select the database
that we want to use. Once the database is selected, we
can proceed with creating tables or querying data. Write
the following SQL statement for using the database:

mysql> USE StudentAttendance;
Database changed

Initially, the created database is empty. It can be
checked by using the Show tables command that lists
names of all the tables within a database.

mysql> SHOW TABLES;
Empty set (0.06 sec)

8.4.2 CREATE Table
After creating database StudentAttendance, we need
to define relations (create tables) in this database and
specify attributes for each relation along with data types
for each attribute. This is done using the CREATE TABLE
statement.
 Syntax:

CREATE TABLE tablename(
attributename1 datatype constraint,
attributename2 datatype constraint,
:
attributenameN datatype constraint);

It is important to observe the following points with
respect to the Create Table statement:
• N is the degree of the relation, means there are N

columns in the table.
• Attribute name specifies the name of the column in

the table.
• Datatype specifies the type of data that an attribute

can hold.
• Constraint indicates the restrictions imposed on the

values of an attribute. By default, each attribute can
take NULL values except for the primary key.

Activity 8.3

Type the statement
show database;. Does
it show the name of
StudentAttendance
database?

Show

Chap 8.indd 147 19-Jul-19 3:45:57 PM

Reprint 2025-26

148 InformatIcs PractIces – class XI

Let us identify data types of the attributes of table
STUDENT along with their constraint, if any. Assuming
maximum students in a class to be 100 and values of
roll number in a sequence from 1 to 100, we know that
3 digits are sufficient to store values for the attribute
RollNumber. Hence, data type INT is appropriate for this
attribute. Total number of characters in student names
(SName) can differ. Assuming maximum characters in
a name as 20, we use VARCHAR(20) for SName column.
Data type for the attribute SDateofBirth is DATE and
supposing the school uses guardian’s 12 digit Aadhaar
number as GUID, we can declare GUID as CHAR (12)
since Aadhaar number is of fixed length and we are not
going to perform any mathematical operation on GUID.

Table 8.3, 8.4 and 8.5 show the chosen data type and
constraint for each attribute of the relations STUDENT,
GUARDIAN and ATTENDANCE, respectively.

Table 8.3 Data types and constraints for the attributes of relation STUDENT
Attribute Name Data expected to be stored Data type Constraint

RollNumber Numeric value consisting of maximum 3 digits INT PRIMARY KEY

SName Variant length string of maximum 20 characters VARCHAR(20) NOT NULL

SDateofBirth Date value DATE NOT NULL

GUID Numeric value consisting of 12 digits CHAR (12) FOREIGN KEY

Table 8.4 Data types and constraints for the attributes of relation GUARDIAN
Attribute Name Data expected to be stored Data type Constraint

GUID Numeric value consisting of 12 digit Aadhaar
number

CHAR (12) PRIMARY KEY

GName Variant length string of maximum 20
characters

VARCHAR(20) NOT NULL

GPhone Numeric value consisting of 10 digits CHAR(10) NULL UNIQUE

GAddress Variant length string of size 30 characters VARCHAR(30) NOT NULL

Table 8.5 Data types and constraints for the attributes of relation ATTENDANCE.
Attribute Name Data expected to be stored Data type Constraint
AttendanceDate Date value DATE PRIMARY KEY*

RollNumber Numeric value consisting of maximum 3
digits

INT PRIMARY KEY*
FOREIGN KEY

AttendanceStatus ‘P’ for present and ‘A’ for absent CHAR(1) NOT NULL

*means part of composite primary key

Once data types and constraints are identified, let us
create tables without specifying constraint along with
the attribute name for simplification. We will learn to
incorporate constraints on attributes in Section 8.4.4.

Chap 8.indd 148 19-Jul-19 3:45:57 PM

Reprint 2025-26

IntroductIon to Structured Query Language (SQL) 149

Example 8.1 Create table STUDENT.
mysql> CREATE TABLE STUDENT(
 -> RollNumber INT,
 -> SName VARCHAR(20),
 -> SDateofBirth DATE,
 -> GUID CHAR(12),
 -> PRIMARY KEY (RollNumber));
Query OK, 0 rows affected (0.91 sec)

Note: ‘,’ is used to separate two attributes and each statement
terminates with a semi-colon (;). The symbol ‘->’ indicates line
continuation as SQL statement may not complete in a single line.

8.4.3 DESCRIBE Table
We can view the structure of an already created table
using the describe statement.
 Syntax:

DESCRIBE tablename;

MySQL also supports the short form DESC of DESCRIBE
to get description of table. To retrieve details about the
structure of relation STUDENT, we can write DESC or
DESCRIBE followed by table name:

Think and Reflect
Can we have a CHAR
or VARCHAR data type
for contact number
(mobile, landline)?

mysql> DESC STUDENT;
+--------------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------------+-------------+------+-----+---------+-------+
RollNumber	int	NO	PRI	NULL	
SName	varchar(20)	YES		NULL	
SDateofBirth	date	YES		NULL	
GUID	char(12)	YES		NULL	
+--------------+-------------+------+-----+---------+-------+
4 rows in set (0.06 sec)

The show table command will now return the table
STUDENT:

mysql> SHOW TABLES;
+------------------------------+
| Tables_in_studentattendance |
+------------------------------+
| student |
+------------------------------+
1 row in set (0.00 sec)

8.4.4 ALTER Table
After creating a table we may realize that we need to
add/remove an attribute or to modify the datatype of an
existing attribute or to add constraint in attribute. In all
such cases, we need to change or alter the structure of
the table by using the alter statement.
 Syntax:

ALTER TABLE tablename ADD/Modify/DROP attribute1,
attribute2,..

Activity 8.4

Create the other two
relations GUARDIAN
and ATTENDANCE
as per data types
given in Table 8.4 and
8.5, and view their
structures. Don't add
any constraint in the
two tables.

Chap 8.indd 149 19-Jul-19 3:45:57 PM

Reprint 2025-26

150 InformatIcs PractIces – class XI

(A) Add primary key to a relation
Let us now alter the tables created in Activity 8.4. The
below MySQL statement adds a primary key to the
GUARDIAN relation:

mysql> ALTER TABLE GUARDIAN ADD PRIMARY KEY (GUID);
Query OK, 0 rows affected (1.14 sec)
Records: 0 Duplicates: 0 Warnings: 0

Now let us add primary key to the ATTENDANCE
relation. The primary key of this relation is a composite
key made up of two attributes — AttendanceDate and
RollNumber.

mysql> ALTER TABLE ATTENDANCE
 -> ADD PRIMARY KEY(AttendanceDate,
 -> RollNumber);
Query OK, 0 rows affected (0.52 sec)
Records: 0 Duplicates: 0 Warnings: 0

(B) Add foreign key to a relation
Once primary keys are added the next step is to add
foreign keys to the relation (if any). A relation may have
multiple foreign keys and each foreign key is defined on
a single attribute. Following points need to be observed
while adding foreign key to a relation:
• The referenced relation must be already created.
• The referenced attribute must be a part of primary

key of the referenced relation.
• Data types and size of referenced and referencing

attributes must be same.
Syntax:

ALTER TABLE table_name ADD FOREIGN KEY(attribute
name) REFERENCES referenced_table_name
(attribute name);

Let us now add foreign key to the table STUDENT.
Table 8.3 shows that attribute GUID (the referencing
attribute) is a foreign key and it refers to attribute GUID
(the referenced attribute) of table GUARDIAN (Table 8.4).
Hence, STUDENT is the referencing table and GUARDIAN
is the referenced table.

mysql> ALTER TABLE STUDENT
 -> ADD FOREIGN KEY(GUID) REFERENCES
 -> GUARDIAN(GUID);
Query OK, 0 rows affected (0.75 sec)
Records: 0 Duplicates: 0 Warnings: 0

(C) Add constraint UNIQUE to an existing attribute
In GUARDIAN table, attribute GPhone has a constraint
UNIQUE which means no two values in that column
should be same.
 Syntax:

Think and Reflect
Name foreign keys in
table ATTENDANCE
and STUDENT. Is there
any foreign key in table
GUARDIAN.

Chap 8.indd 150 19-Jul-19 3:45:57 PM

Reprint 2025-26

IntroductIon to Structured Query Language (SQL) 151

ALTER TABLE table_name ADD UNIQUE (attribute
name);

Let us now add the constraint UNIQUE with attribute
GPhone of the table GUARDIAN as shown at table 8.4.

mysql> ALTER TABLE GUARDIAN
 -> ADD UNIQUE(GPhone);
Query OK, 0 rows affected (0.44 sec)
Records: 0 Duplicates: 0 Warnings: 0

(D) Add an attribute to an existing table
Sometimes, we may need to add an additional attribute
in a table. It can be done using the syntax given below:
 ALTER TABLE table_name ADD attribute_name DATATYPE;

Suppose the principal of the school has decided to
award scholarship to some needy students for which
income of the guardian must be known. But school has
not maintained income attribute with table GUARDIAN
so far. Therefore, the database designer now needs to
add a new attribute income of data type INT in the table
GUARDIAN.

mysql> ALTER TABLE GUARDIAN
 -> ADD income INT;
Query OK, 0 rows affected (0.47 sec)
Records: 0 Duplicates: 0 Warnings: 0

(E) Modify datatype of an attribute
We can modify data types of the existing attributes of a
table using the following ALTER statement.
 Syntax:

ALTER TABLE table_name MODIFY attribute DATATYPE;

Suppose we need to change the size of attribute
GAddress from VARCHAR(30) to VARCHAR(40) of the
GUARDIAN table. The MySQL statement will be:

mysql> ALTER TABLE GUARDIAN
 -> MODIFY GAddress VARCHAR(40);
Query OK, 0 rows affected (0.11 sec)
Records: 0 Duplicates: 0 Warnings: 0

(F) Modify constraint of an attribute
When we create a table, by default each attribute takes
NULL value except for the attribute defined as primary
key. We can change an attribute’s constraint from NULL
to NOT NULL using alter statement.
Syntax:

ALTER TABLE table_name MODIFY attribute DATATYPE
NOT NULL;

Note: We have to specify the data type of the attribute along with
constraint NOT NULL while using MODIFY.

Think and Reflect
What are the minimum
and maximum income
values that can be
entered in the income
attribute given the data
type is INT?

Activity 8.5

Add foreign key in
the ATTENDANCE
table (use fig. 8.1 to
identify referencing and
referenced tables).

Chap 8.indd 151 19-Jul-19 3:45:57 PM

Reprint 2025-26

152 InformatIcs PractIces – class XI

To associate NOT NULL constraint with attribute
SName of table STUDENT (table 8.3), we write the
following MySQL statement:

 mysql> ALTER TABLE STUDENT
 -> MODIFY SName VARCHAR(20) NOT NULL;
Query OK, 0 rows affected (0.47 sec)
Records: 0 Duplicates: 0 Warnings: 0

(G) Add default value to an attribute
If we want to specify default value for an attribute, then
use the following syntax:

ALTER TABLE table_name MODIFY attribute DATATYPE
DEFAULT default_value;

To set default value of SDateofBirth of STUDENT to
15th May 2000, we write the following statement:

mysql> ALTER TABLE STUDENT
 -> MODIFY SDateofBirth DATE DEFAULT
 -> 2000-05-15;
Query OK, 0 rows affected (0.08 sec)
Records: 0 Duplicates: 0 Warnings: 0

Note: We have to specify the data type of the attribute along with
DEFAULT while using MODIFY.

(H) Remove an attribute
Using ALTER, we can remove attributes from a table, as
shown in the below syntax:

ALTER TABLE table_name DROP attribute;

To remove the attribute income from the table
GUARDIAN (8.4), we can write the following MySQL
statement:

mysql> ALTER TABLE GUARDIAN DROP income;
Query OK, 0 rows affected (0.42 sec)
Records: 0 Duplicates: 0 Warnings: 0

(I) Remove primary key from the table
While creating a table, we may have specified incorrect
primary key. In such case, we need to drop the existing
primary key of the table and add a new primary key.
 Syntax:

ALTER TABLE table_name DROP PRIMARY KEY;

To remove primary key of table GUARDIAN (Table 8.4),
we write the following MySQL statement:

mysql> ALTER TABLE GUARDIAN DROP PRIMARY KEY;
Query OK, 0 rows affected (0.72 sec)
Records: 0 Duplicates: 0 Warnings: 0

Note: We have dropped primary key from GUARDIAN table, but
each table should have a primary key to maintain uniqueness.
Hence, we have to use ADD command to specify primary key for
the GUARDIAN table as shown in earlier examples.

noteS

Chap 8.indd 152 19-Jul-19 3:45:57 PM

Reprint 2025-26

IntroductIon to Structured Query Language (SQL) 153

8.4.5 DROP Statement
Sometimes a table in a database or the database itself
needs to be removed. We can use DROP statement to
remove a database or a table permanently from the
system. However, one should be very cautious while
using this statement as it cannot be undone.
 Syntax to drop a table:

DROP TABLE table_name;

 Syntax to drop a database:
DROP DATABASE database_name;

Cautions:
1) Using the Drop statement to remove a database will

ultimately remove all the tables within it.
2) DROP statement will remove the tables or database

created by you. Hence you may apply DROP statement at
the end of the chapter.

8.5 SQL for data ManIpuLatIon

In the previous section, we created the database
StudentAttendance having three relations STUDENT,
GUARDIAN and ATTENDANCE. When we create a table,
only its structure is created but the table has no data.
To populate records in the table, INSERT statement is
used. Similarly, table records can be deleted or updated
using SQL data manipulation statements.

Data Manipulation using a database means either
retrieval (access) of existing data, insertion of new data,
removal of existing data or modification of existing data
in the database.

8.5.1 INSERTION of Records
INSERT INTO statement is used to insert new records in
a table. Its syntax is:

INSERT INTO tablename
VALUES(value 1, value 2,....);

Here, value 1 corresponds to attribute 1, value 2
corresponds to attribute 2 and so on. Note that we need
not to specify attribute names in insert statement if
there are exactly same number of values in the INSERT
statement as the total number of attributes in the table.
Caution: While populating records in a table with foreign
key, ensure that records in referenced tables are already
populated.

noteS

Chap 8.indd 153 19-Jul-19 3:45:58 PM

Reprint 2025-26

154 InformatIcs PractIces – class XI

Let us insert some records in the StudentAttendance
database. We shall insert records in the GUARDIAN
table first as it does not have any foreign key. We are
going to insert the records given in Table 8.6.

mysql> SELECT * from GUARDIAN;
+--------------+-----------------+------------+-------------------------------+
| GUID | GName | Gphone | GAddress |
+--------------+-----------------+------------+-------------------------------+
| 444444444444 | Amit Ahuja | 5711492685 | G-35, Ashok vihar, Delhi |
+--------------+-----------------+------------+-------------------------------+
1 row in set (0.00 sec)

If we want to provide values only for some of the
attributes in a table (supposing other attributes having
NULL or any other default value), then we shall specify
the attribute name alongside each data value as shown
in the following syntax of INSERT INTO statement.
 Syntax:

INSERT INTO tablename (column1, column2, ...)
VALUES (value1, value2, ...);

To insert the fourth record of Table 8.6 where GPhone
is not given, we need to insert values in the other three
fields (GPhone was set to NULL by default at the time
of table creation). In this case, we have to specify the
names of attributes in which we want to insert values.
The values must be given in the same order in which
attributes are written in INSERT command.

mysql> INSERT INTO GUARDIAN(GUID, GName, GAddress)
 -> VALUES (333333333333, 'Danny Dsouza',

Table 8.6 Records to be inserted into the GUARDIAN table
GUID GName GPhone GAddress

444444444444 Amit Ahuja 5711492685 G-35, Ashok Vihar, Delhi
111111111111 Baichung Bhutia 3612967082 Flat no. 5, Darjeeling Appt., Shimla
101010101010 Himanshu Shah 4726309212 26/77, West Patel Nagar, Ahmedabad
333333333333 Danny Dsouza S -13, Ashok Village, Daman

466444444666 Sujata P. 3801923168 HNO-13, B- block, Preet Vihar, Madurai

The below statement inserts the first record in the
table.

mysql> INSERT INTO GUARDIAN
 -> VALUES (444444444444, 'Amit Ahuja',
 -> 5711492685, 'G-35,Ashok vihar, Delhi');
Query OK, 1 row affected (0.01 sec)

We can use the SQL statement SELECT * from table_
name to view the inserted records. The SELECT statement
will be explained in next section.

Activity 8.6

Write SQL statements
to insert the remaining
3 rows of table 8.6 in
table GUARDIAN.

Chap 8.indd 154 3/31/2023 3:57:16 PM

Reprint 2025-26

IntroductIon to Structured Query Language (SQL) 155

 -> 'S -13, Ashok Village, Daman');
Query OK, 1 row affected (0.03 sec)

Note: Text and date values must be enclosed in ‘ ’ (single quotes).
mysql> SELECT * from GUARDIAN;
+--------------+--------------+------------+----------------------------------+
| GUID | GName | Gphone | GAddress |
+--------------+--------------+------------+----------------------------------+
| 333333333333 | Danny Dsouza | NULL | S -13, Ashok Village, Daman |
| 444444444444 | Amit Ahuja | 5711492685 | G-35, Ashok vihar, Delhi |
+--------------+--------------+------------+----------------------------------+
2 rows in set (0.00 sec)

Let us now insert the records given in Table 8.7 into
the STUDENT table.

mysql> SELECT * from STUDENT;
+------------+--------------+--------------+--------------+
| RollNumber | SName | SDateofBirth | GUID |
+------------+--------------+--------------+--------------+
| 1 | Atharv Ahuja | 2003-05-15 | 444444444444 |
+------------+--------------+--------------+--------------+
1 row in set (0.00 sec)

Let us now insert the third record of Table 8.7 where
GUID is NULL. Recall that GUID is foreign key of this
table and thus can take NULL value. Hence, we can put
NULL value for GUID and insert the record by using the
following statement:

Recall that Date is
stored in “YYYY-MM-

DD” format.

Table 8.7 Records to be inserted into the STUDENT table
RollNumber SName SDateofBirth GUID

1 Atharv Ahuja 2003-05-15 444444444444
2 Daizy Bhutia 2002-02-28 111111111111
3 Taleem Shah 2002-02-28

4 John Dsouza 2003-08-18 333333333333
5 Ali Shah 2003-07-05 101010101010
6 Manika P. 2002-03-10 466444444666

To insert the first record of Table 8.7, we write the
following MySQL statement

mysql> INSERT INTO STUDENT
 -> VALUES(1,'Atharv Ahuja','2003-05-15',
 -> 444444444444);
Query OK, 1 row affected (0.11 sec)

OR
mysql> INSERT INTO STUDENT (RollNumber, SName,
 -> SDateofBirth, GUID)
 -> VALUES (1,'Atharv Ahuja','2003-05-15',
 -> 444444444444);
Query OK, 1 row affected (0.02 sec)

Chap 8.indd 155 19-Jul-19 3:45:58 PM

Reprint 2025-26

156 InformatIcs PractIces – class XI

mysql> SELECT * from STUDENT;
+------------+--------------+--------------+--------------+
| RollNumber | SName | SDateofBirth | GUID |
+------------+--------------+--------------+--------------+
| 1 | Atharv Ahuja | 2003-05-15 | 444444444444 |
| 3 | Taleem Shah | 2002-02-28 | NULL |

+------------+--------------+--------------+--------------+
2 rows in set (0.00 sec)

We had to write NULL in the above MySQL statement
because when not giving the column names, we need
to give values for all the columns. Otherwise, we have
to give names of attributes along with the values if we
need to insert data only for certain attributes, as shown
in the next query:

mysql> INSERT INTO STUDENT (RollNumber, SName,
 -> SDateofBirth) VALUES (3, 'Taleem Shah','
 -> 2002-02-28');
Query OK, 1 row affected (0.05 sec)

 In the above statement we are informing DBMS
to insert the corresponding values for the mentioned
columns and GUID would be assigned NULL value.

mysql> SELECT * from STUDENT;

+------------+--------------+--------------+--------------+

| RollNumber | SName | SDateofBirth | GUID |

+------------+--------------+--------------+--------------+

| 1 | Atharv Ahuja | 2003-05-15 | 444444444444 |

| 3 | Taleem Shah | 2002-02-28 | NULL |

+------------+--------------+--------------+--------------+

2 rows in set (0.00 sec)

8.6 SQL for data Query

So far we have learnt how to create database as well
as to store and manipulate data. We are interested to
store data in a database as it is easier to retrieve data
in future from databases in whatever way we want.
The Structured Query Language (SQL) has efficient
mechanisms to retrieve data stored in multiple tables
in a MySQL database (or any other RDBMS). The
user enters the SQL commands called queries where
the specific requirements for data to be retrieved are
provided. The SQL statement SELECT is used to retrieve
data from the tables in a database and is also called
query statement.

Think and Reflect
• Which of the above

syntax should be
used when we are
not sure of the order
(with respect to the
column) in which
the values are to be
inserted in the table?

• Can we insert two
records with the
same roll number?

Activity 8.7

Write SQL statements
to insert the remaining
4 rows of table 8.7 in
table STUDENT.

mysql> INSERT INTO STUDENT
 -> VALUES(3, 'Taleem Shah','2002-02-28',
 -> NULL);
Query OK, 1 row affected (0.05 sec)

Chap 8.indd 156 19-Jul-19 3:45:58 PM

Reprint 2025-26

IntroductIon to Structured Query Language (SQL) 157

8.6.1 SELECT Statement
The SQL statement SELECT is used to retrieve data from
the tables in a database and the output is also displayed
in tabular form.
 Syntax:

SELECT attribute1, attribute2, ...
FROM table_name
WHERE condition

Here, attribute1, attribute2, ... are the column names
of the table table_name from which we want to retrieve
data. The FROM clause is always written with SELECT
clause as it specifies the name of the table from which
data is to be retrieved. The WHERE clause is optional and
is used to retrieve data that meet specified condition(s).

Example 8.2 To display the name and date of birth of student
with roll number 2, we write the following query:

mysql> SELECT SName, SDateofBirth
 -> FROM STUDENT
 -> WHERE RollNumber = 1;
+--------------+--------------+
| SName | SDateofBirth |
+--------------+--------------+
| Atharv Ahuja | 2003-05-15 |
+--------------+--------------+
1 row in set (0.03 sec)

8.6.2 QUERYING using Database OFFICE
Different organisations maintain databases to
store data in the form of tables. Let us consider the
database OFFICE of an organisation that has many
related tables like EMPLOYEE, DEPARTMENT and
so on. Every EMPLOYEE in the database is assigned
to a DEPARTMENT and his/her Department number
(DeptId) is stored as a foreign key in the table EMPLOYEE.
Let us consider some data for the table ‘EMPLOYEE’ as
shown in Table 8.8 and apply the SELECT statement to
retrieve data:

Table 8.8 EMPLOYEE
EmpNo Ename Salary Bonus Deptld

101 Aaliya 10000 234 D02

102 Kritika 60000 123 D01

103 Shabbir 45000 566 D01

104 Gurpreet 19000 565 D04

105 Joseph 34000 875 D03

Think and Reflect
Can you think of
examples from daily
life where storing
and querying data
in a database can be
helpful?

Chap 8.indd 157 19-Jul-19 3:45:58 PM

Reprint 2025-26

158 InformatIcs PractIces – class XI

106 Sanya 48000 695 D02

107 Vergese 15000 D01

108 Nachaobi 29000 D05

109 Daribha 42000 D04

110 Tanya 50000 467 D05

(A) Retrieve selected columns
The following query displays employee numbers of all
the employees:

mysql> SELECT EmpNo
 -> FROM EMPLOYEE;
+-------+
| EmpNo |
+-------+
| 101 |
| 102 |
| 103 |
| 104 |
| 105 |
| 106 |
| 107 |
| 108 |
| 109 |
| 110 |
+-------+
10 rows in set (0.41 sec)

To display the employee number and employee name
of all the employees, we write the following query:

mysql> SELECT EmpNo, Ename
 -> FROM EMPLOYEE;
+-------+----------+
| EmpNo | Ename |
+-------+----------+
101	Aaliya
102	Kritika
103	Shabbir
104	Gurpreet
105	Joseph
106	Sanya
107	Vergese
108	Nachaobi
109	Daribha
110	Tanya
+-------+----------+
10 rows in set (0.00 sec)

(B) Renaming of columns
In case we want to rename any column while displaying
the output, we can do so by using alias 'AS' in the
query as:

Display Employee name as Name in the output for
all the employees.

mysql> SELECT EName AS Name

noteS

Chap 8.indd 158 19-Jul-19 3:45:58 PM

Reprint 2025-26

IntroductIon to Structured Query Language (SQL) 159

 -> FROM EMPLOYEE;
+----------+
| Name |
+----------+
| Aaliya |
| Kritika |
| Shabbir |
| Gurpreet |
| Joseph |
| Sanya |
| Vergese |
| Nachaobi |
| Daribha |
| Tanya |
+----------+
10 rows in set (0.00 sec)

Example 8.3 Display names of all employees along with their
annual salary (Salary*12). While displaying query result,
rename EName as Name.

mysql> SELECT EName AS Name, Salary*12
 -> FROM EMPLOYEE;
+----------+-----------+
| Name | Salary*12 |
+----------+-----------+
Aaliya	120000
Kritika	720000
Shabbir	540000
Gurpreet	228000
Joseph	408000
Sanya	576000
Vergese	180000
Nachaobi	348000
Daribha	504000
Tanya	600000
+----------+-----------+
10 rows in set (0.02 sec)

Observe that in the output, Salary*12 is displayed as
the column name for the annual salary column. In the
output table, we can use alias to rename that column as
Annual Salary as shown below:

mysql> SELECT Ename AS Name, Salary*12 AS
 -> 'Annual Salary'
 -> FROM EMPLOYEE;

+----------+---------------+
| Name | Annual Salary |
+----------+---------------+
Aaliya	120000
Kritika	720000
Shabbir	540000
Gurpreet	228000
Joseph	408000
Sanya	576000
Vergese	180000
Nachaobi	348000
Daribha	504000
Tanya	600000
+----------+---------------+
10 rows in set (0.00 sec)

noteS

Chap 8.indd 159 19-Jul-19 3:45:58 PM

Reprint 2025-26

160 InformatIcs PractIces – class XI

Note:
i) Annual Salary will not be added as a new column in the

database table. It is just for displaying the output of the
query.

ii) If an aliased column name has space as in the case of Annual
Salary, it should be enclosed in quotes as 'Annual Salary'.

(C) DISTINCT Clause
By default, SQL shows all the data retrieved through
query as output. However, there can be duplicate values.
The SELECT statement when combined with DISTINCT
clause, returns records without repetition (distinct
records). For example, while retrieving employee’s
department number, there can be duplicate values as
many employees are assigned to same department. To
display unique department number for all the employees,
we use DISTINCT as shown below:

mysql> SELECT DISTINCT DeptId
 -> FROM EMPLOYEE;
+--------+
| DeptId |
+--------+
| D02 |
| D01 |
| D04 |
| D03 |
| D05 |
+--------+
5 rows in set (0.03 sec)

(D) WHERE Clause
The WHERE clause is used to retrieve data that meet
some specified conditions. In the OFFICE database,
more than one employee can have the same salary. To
display distinct salaries of the employees working in the
department number D01, we write the following query
in which the condition to select the employee whose
department number is D01 is specified using the WHERE
clause:

mysql> SELECT DISTINCT Salary
 -> FROM EMPLOYEE
 -> WHERE Deptid='D01';

As the column DeptId is of string type, its values are
enclosed in quotes ('D01').

+--------+
| Salary |
+--------+
| 60000 |
| 45000 |
| 15000 |
+--------+
3 rows in set (0.02 sec)

noteS

Chap 8.indd 160 19-Jul-19 3:45:58 PM

Reprint 2025-26

IntroductIon to Structured Query Language (SQL) 161

In the above example, we have used = operator in
WHERE clause. We can also use other relational operators
(<, <=, >, >=, !=) to specify conditions. The logical
operators AND, OR, and NOT are used with WHERE clause
to combine multiple conditions.

Example 8.4 Display all the employees who are earning more
than 5000 and work in department with DeptId D04.

mysql> SELECT *
 -> FROM EMPLOYEE
 -> WHERE Salary > 5000 AND DeptId = 'D04';

+-------+----------+--------+-------+--------+
| EmpNo | Ename | Salary | Bonus | DeptId |
+-------+----------+--------+-------+--------+
| 104 | Gurpreet | 19000 | 565 | D04 |
| 109 | Daribha | 42000 | NULL | D04 |
+-------+----------+--------+-------+--------+
2 rows in set (0.00 sec)

Example 8.5 The following query displays records of all the
employees except Aaliya.

mysql> SELECT *
 -> FROM EMPLOYEE
 -> WHERE NOT Ename = 'Aaliya';
+-------+----------+--------+-------+--------+
| EmpNo | Ename | Salary | Bonus | DeptId |
+-------+----------+--------+-------+--------+
102	Kritika	60000	123	D01
103	Shabbir	45000	566	D01
104	Gurpreet	19000	565	D04
105	Joseph	34000	875	D03
106	Sanya	48000	695	D02
107	Vergese	15000	NULL	D01
108	Nachaobi	29000	NULL	D05
109	Daribha	42000	NULL	D04
110	Tanya	50000	467	D05
+-------+----------+--------+-------+--------+
9 rows in set (0.00 sec)

Example 8.6 The following query displays name and
department number of all those employees who are earning
salary between 20000 and 50000 (both values inclusive).

mysql> SELECT Ename, DeptId
 -> FROM EMPLOYEE
 -> WHERE Salary>=20000 AND Salary<=50000;
+----------+--------+
| Ename | DeptId |
+----------+--------+
Shabbir	D01
Joseph	D03
Sanya	D02
Nachaobi	D05
Daribha	D04
Tanya	D05
+----------+--------+
6 rows in set (0.00 sec)

Think and Reflect
What will happen if
in the above query
we write “Aaliya” as
“AALIYA” or “aaliya”
or “AaLIYA”? Will the
query generate the same
output or an error?

Activity 8.8

Compare the output
produced by the query
in example 8.6 and
the following query
and differentiate
between the OR and AND
operators.
SELECT *
FROM EMPLOYEE
WHERE Salary > 5000 OR
 DeptId= 20;

Chap 8.indd 161 19-Jul-19 3:45:58 PM

Reprint 2025-26

162 InformatIcs PractIces – class XI

The above query defines a range that can also be
checked using a comparison operator BETWEEN.

mysql> SELECT Ename, DeptId
 -> FROM EMPLOYEE
 -> WHERE Salary BETWEEN 20000 AND 50000;
+----------+--------+
| Ename | DeptId |
+----------+--------+
Shabbir	D01
Joseph	D03
Sanya	D02
Nachaobi	D05
Daribha	D04
Tanya	D05
+----------+--------+
6 rows in set (0.03 sec)

Note: The BETWEEN operator defines the range of values in which
the column value must fall into, to make the condition true.

Example 8.7 The following query displays details of all the
employees who are working either in DeptId D01, D02 or
D04.

mysql> SELECT *
 -> FROM EMPLOYEE
 -> WHERE DeptId = 'D01' OR DeptId = 'D02' OR
 -> DeptId = 'D04';
+-------+----------+--------+-------+--------+
| EmpNo | Ename | Salary | Bonus | DeptId |
+-------+----------+--------+-------+--------+
101	Aaliya	10000	234	D02
102	Kritika	60000	123	D01
103	Shabbir	45000	566	D01
104	Gurpreet	19000	565	D04
106	Sanya	48000	695	D02
107	Vergese	15000	NULL	D01
109	Daribha	42000	NULL	D04
+-------+----------+--------+-------+--------+
7 rows in set (0.00 sec)

(E) MEMBERSHIP OPERATOR IN
The IN operator compares a value with a set of values
and returns true if the value belongs to that set. The
above query can be rewritten using IN operator as
shown below:

mysql> SELECT *
 -> FROM EMPLOYEE
 -> WHERE DeptId IN ('D01', 'D02' , 'D04');
+-------+----------+--------+-------+--------+
| EmpNo | Ename | Salary | Bonus | DeptId |
+-------+----------+--------+-------+--------+
101	Aaliya	10000	234	D02
102	Kritika	60000	123	D01
103	Shabbir	45000	566	D01
104	Gurpreet	19000	565	D04
106	Sanya	48000	695	D02
107	Vergese	15000	NULL	D01
109	Daribha	42000	NULL	D04
+-------+----------+--------+-------+--------+
7 rows in set (0.00 sec)

noteS

Chap 8.indd 162 19-Jul-19 3:45:58 PM

Reprint 2025-26

IntroductIon to Structured Query Language (SQL) 163

Example 8.8 The following query displays details of all the
employees except those working in department number D01
or D02.

mysql> SELECT *
 -> FROM EMPLOYEE
 -> WHERE DeptId NOT IN('D01', 'D02');

+-------+----------+--------+-------+--------+
| EmpNo | Ename | Salary | Bonus | DeptId |
+-------+----------+--------+-------+--------+
104	Gurpreet	19000	565	D04
105	Joseph	34000	875	D03
108	Nachaobi	29000	NULL	D05
109	Daribha	42000	NULL	D04
110	Tanya	50000	467	D05
+-------+----------+--------+-------+--------+
5 rows in set (0.00 sec)

Note: Here we need to combine NOT with IN as we want to retrieve
all records except with DeptId D01 and D02.

(F) ORDER BY Clause
ORDER BY clause is used to display data in an ordered
(arranged) form with respect to a specified column. By
default, ORDER BY displays records in ascending order of
the specified column’s values. To display the records in
descending order, the DESC (means descending) keyword
needs to be written with that column.

Example 8.9 The following query displays details of all the
employees in ascending order of their salaries.

mysql> SELECT *
 -> FROM EMPLOYEE
 -> ORDER BY Salary;

+-------+----------+--------+-------+--------+
| EmpNo | Ename | Salary | Bonus | DeptId |
+-------+----------+--------+-------+--------+
101	Aaliya	10000	234	D02
107	Vergese	15000	NULL	D01
104	Gurpreet	19000	565	D04
108	Nachaobi	29000	NULL	D05
105	Joseph	34000	875	D03
109	Daribha	42000	NULL	D04
103	Shabbir	45000	566	D01
106	Sanya	48000	695	D02
110	Tanya	50000	467	D05
102	Kritika	60000	123	D01
+-------+----------+--------+-------+--------+
10 rows in set (0.05 sec)

Example 8.10 The following query displays details of all the
employees in descending order of their salaries.

mysql> SELECT *
 -> FROM EMPLOYEE
 -> ORDER BY Salary DESC;

noteS

Chap 8.indd 163 19-Jul-19 3:45:58 PM

Reprint 2025-26

164 InformatIcs PractIces – class XI

+-------+----------+--------+-------+--------+
| EmpNo | Ename | Salary | Bonus | DeptId |
+-------+----------+--------+-------+--------+
102	Kritika	60000	123	D01
110	Tanya	50000	467	D05
106	Sanya	48000	695	D02
103	Shabbir	45000	566	D01
109	Daribha	42000	NULL	D04
105	Joseph	34000	875	D03
108	Nachaobi	29000	NULL	D05
104	Gurpreet	19000	565	D04
107	Vergese	15000	NULL	D01
101	Aaliya	10000	234	D02
+-------+----------+--------+-------+--------+
10 rows in set (0.00 sec)

(G) Handling NULL Values
SQL supports a special value called NULL to represent
a missing or unknown value. For example, the village
column in a table called address will have no value for
cities. Hence, NULL is used to represent such unknown
values. It is important to note that NULL is different
from 0 (zero). Also, any arithmetic operation performed
with NULL value gives NULL. For example: 5 + NULL =
NULL because NULL is unknown hence the result is also
unknown. In order to check for NULL value in a column,
we use IS NULL.
Example 8.11 The following query displays details of all
those employees who have not been given a bonus. This
implies that the bonus column will be blank.

mysql> SELECT *
 -> FROM EMPLOYEE
 -> WHERE Bonus IS NULL;

+-------+----------+--------+-------+--------+
| EmpNo | Ename | Salary | Bonus | DeptId |
+-------+----------+--------+-------+--------+
107	Vergese	15000	NULL	D01
108	Nachaobi	29000	NULL	D05
109	Daribha	42000	NULL	D04
+-------+----------+--------+-------+--------+
3 rows in set (0.00 sec)

Example 8.12 The following query displays names of all the
employees who have been given a bonus. This implies that
the bonus column will not be blank.

mysql> SELECT EName
 -> FROM EMPLOYEE
 -> WHERE Bonus IS NOT NULL;
+----------+
| EName |
+----------+
| Aaliya |
| Kritika |
| Shabbir |
| Gurpreet |
| Joseph |
| Sanya |
| Tanya |
+----------+
7 rows in set (0.00 sec)

Activity 8.9

Execute the following
two queries and find
out what will happen if
we specify two columns
in the ORDER BY clause:
SELECT *
FROM EMPLOYEE
ORDER BY Salary,
Bonus;

SELECT *
FROM EMPLOYEE
ORDER BY Salary,Bonus

desc;

Chap 8.indd 164 19-Jul-19 3:45:58 PM

Reprint 2025-26

IntroductIon to Structured Query Language (SQL) 165

(H) Substring pattern matching
Many a times we come across situations where we don’t
want to query by matching exact text or value. Rather, we
are interested to find matching of only a few characters
or values in column values. For example, to find out
names starting with ‘T’ or to find out pin codes starting
with ‘60’. This is called substring pattern matching.
We cannot match such patterns using = operator as
we are not looking for exact match. SQL provides LIKE
operator that can be used with WHERE clause to search
for a specified pattern in a column.

The LIKE operator makes use of the following two
wild card characters:
• % (percent)— used to represent zero, one, or multiple

characters
• _ (underscore)— used to represent a single character

Example 8.13 The following query displays details of all those
employees whose name starts with 'K'.

mysql> SELECT *
 -> FROM EMPLOYEE
 -> WHERE Ename LIKE 'K%';

+-------+---------+--------+-------+--------+
| EmpNo | Ename | Salary | Bonus | DeptId |
+-------+---------+--------+-------+--------+
| 102 | Kritika | 60000 | 123 | D01 |
+-------+---------+--------+-------+--------+
1 row in set (0.00 sec)

Example 8.14 The following query displays details of all
those employees whose name ends with 'a'.

mysql> SELECT *
 -> FROM EMPLOYEE
 -> WHERE Ename LIKE '%a';

+-------+---------+--------+-------+--------+
| EmpNo | Ename | Salary | Bonus | DeptId |
+-------+---------+--------+-------+--------+
101	Aaliya	10000	234	D02
102	Kritika	60000	123	D01
106	Sanya	48000	695	D02
109	Daribha	42000	NULL	D04
110	Tanya	50000	467	D05
+-------+---------+--------+-------+--------+
5 rows in set (0.00 sec)

Example 8.15 The following query displays details of all
those employees whose name consists of exactly 5 letters
and starts with any letter but has ‘ANYA’ after that.

mysql> SELECT *

noteS

Chap 8.indd 165 19-Jul-19 3:45:58 PM

Reprint 2025-26

166 InformatIcs PractIces – class XI

 -> FROM EMPLOYEE
 -> WHERE Ename LIKE '_ANYA';

+-------+-------+--------+-------+--------+
| EmpNo | Ename | Salary | Bonus | DeptId |
+-------+-------+--------+-------+--------+
| 106 | Sanya | 48000 | 695 | D02 |
| 110 | Tanya | 50000 | 467 | D05 |
+-------+-------+--------+-------+--------+
2 rows in set (0.00 sec)

Example 8.16 The following query displays names of all the
employees containing 'se' as a substring in name.

mysql> SELECT Ename
 -> FROM EMPLOYEE
 -> WHERE Ename LIKE '%se%';
+---------+
| Ename |
+---------+
| Joseph |
| Vergese |
+---------+
2 rows in set (0.00 sec)

Example 8.17 The following query displays names of all
employees containing 'a' as the second character.

mysql> SELECT EName
 -> FROM EMPLOYEE
 -> WHERE Ename LIKE '_a%';

+----------+
| EName |
+----------+
| Aaliya |
| Sanya |
| Nachaobi |
| Daribha |
| Tanya |
+----------+
5 rows in set (0.00 sec)

8.7 data updatIon and deLetIon

Updation and deletion of data are also the parts of SQL
data manipulation. In this section, we are going to apply
these two data manipulation methods.

8.7.1 Data Updation
We may need to make changes in the value(s) of one or
more columns of existing records in a table. For example,
we may require some changes in address, phone number
or spelling of name, etc. The UPDATE statement is used to
make such modifications in the existing data.
 Syntax:

UPDATE table_name
SET attribute1 = value1, attribute2 = value2, ...

Think and Reflect
When we type first letter
of a contact name in
our contact list in our
mobile phones all the
names containing that
character are displayed.
Can you relate SQL
statement with the
process? List other real
life situations where you
can visualize an SQL
statement in operation.

Chap 8.indd 166 19-Jul-19 3:45:58 PM

Reprint 2025-26

IntroductIon to Structured Query Language (SQL) 167

WHERE condition;

The STUDENT Table 8.7 has NULL value for GUID
for student with roll number 3. Also, suppose students
with roll numbers 3 and 5 are siblings. So, in STUDENT
table, we need to fill the GUID value for student with
roll number 3 as 101010101010. In order to update or
change GUID of a particular row (record), we need to
specify that record using WHERE clause, as shown below:

mysql> UPDATE STUDENT
 -> SET GUID = 101010101010
 -> WHERE RollNumber = 3;
Query OK, 1 row affected (0.06 sec)
Rows matched: 1 Changed: 1 Warnings: 0

We can then verify the updated data using the
statement SELECT * FROM STUDENT.
Caution : If we miss the where clause in the UPDATE statement then
the GUID of all the records will be changed to 101010101010.

We can also update values for more than one column
using the UPDATE statement. Suppose, the guardian
(Table 8.6) with GUID 466444444666 has requested to
change the Address to 'WZ - 68, Azad Avenue, Bijnour,
MP' and Phone number to '4817362092'.

mysql> UPDATE GUARDIAN
 -> SET GAddress = 'WZ - 68, Azad Avenue,
 -> Bijnour, MP', GPhone = 9010810547
 -> WHERE GUID = 466444444666;
Query OK, 1 row affected (0.06 sec)
Rows matched: 1 Changed: 1 Warnings: 0
mysql> SELECT * FROM GUARDIAN ;

+------------+---------------+----------+------------------------------------+
|GUID |GName |Gphone |GAddress |
+------------+---------------+----------+------------------------------------+
444444444444	Amit Ahuja	5711492685	G-35, Ashok vihar, Delhi
111111111111	Baichung Bhutia	3612967082	Flat no. 5, Darjeeling Appt., Shimla
101010101010	Himanshu Shah	4726309212	26/77, West Patel Nagar, Ahmedabad
333333333333	Danny Dsouza	NULL	S -13, Ashok Village, Daman
466444444666	Sujata P.	3801923168	WZ - 68, Azad Avenue, Bijnour, MP
+------------+---------------+----------+------------------------------------+
5 rows in set (0.00 sec)

8.7.2 Data Deletion
The DELETE statement is used to delete one or more
record(s) from a table.
 Syntax:

DELETE FROM table_name
WHERE condition;

Chap 8.indd 167 3/31/2023 3:58:23 PM

Reprint 2025-26

168 InformatIcs PractIces – class XI

Suppose the student with roll number 2 has left the
school. We can use the following MySQL statement to
delete that record from the STUDENT table.

mysql> DELETE FROM STUDENT WHERE RollNumber = 2;
Query OK, 1 row affected (0.06 sec)

mysql> SELECT * FROM STUDENT ;
+------------+--------------+--------------+--------------+
| RollNumber | SName | SDateofBirth | GUID |
+------------+--------------+--------------+--------------+
1	Atharv Ahuja	2003-05-15	444444444444
3	Taleem Shah	2002-02-28	101010101010
4	John Dsouza	2003-08-18	333333333333
5	Ali Shah	2003-07-05	101010101010
6	Manika P.	2002-03-10	466444444666
+------------+--------------+--------------+--------------+
5 rows in set (0.00 sec)

Caution: Like UPDATE statement, we need to be careful to include
WHERE clause while using DELETE statement to delete records in a
table. Otherwise, all the records in the table will get deleted.

SuMMary
• Database is a collection of related tables. MySQL is a

‘relational’ DBMS. A table is a collection of rows and
columns, where each row is a record and columns
describe the feature of records.

• SQL is the standard language for most RDBMS.
SQL is case insensitive.

• CREATE DATABASE statement is used to create a new
database.

• USE statement is used for making the specified
database as active database.

• CREATE TABLE statement is used to create a table.
• Every attribute in a CREATE TABLE statement must

have a name and a datatype.
• ALTER TABLE statement is used to make changes in

the structure of a table like adding, removing or
changing datatype of column(s).

• The DESC statement with table name shows the
structure of the table.

• INSERT INTO statement is used to insert record(s) in
a table.

• UPDATE statement is used to modify existing data in
a table.

• DELETE statement is used to delete records in a table.

Chap 8.indd 168 19-Jul-19 3:45:58 PM

Reprint 2025-26

IntroductIon to Structured Query Language (SQL) 169

Exercise

1. Match the following clauses with their respective
functions.

ALTER Insert the values in a table

UPDATE Restrictions on columns

DELETE Table definition

INSERT INTO Change the name of a column

CONSTRAINTS Update existing information in a table

DESC Delete an existing row from a table

CREATE Create a database

2. Choose appropriate answer with respect to the following
code snippet.

CREATE TABLE student (
 name CHAR(30),

• The SELECT statement is used to retrieve data from
one or more database tables.

• SELECT * FROM table_name displays data from all
the attributes of that table.

• The WHERE clause is used to enforce condition(s) in
a query.

• DISTINCT clause is used to eliminate repetition and
display the values only once.

• The BETWEEN operator defines the range of values
inclusive of boundary values.

• The IN operator selects values that match any value
in the given list of values.

• NULL values can be tested using IS NULL and IS
NOT NULL.

• ORDER BY clause is used to display the result of an
SQL query in ascending or descending order with
respect to specified attribute values. The default is
ascending order.

• LIKE clause is used for pattern matching. % and _
are two wild card characters. The percent (%) symbol
is used to represent zero or more characters. The
underscore (_) symbol is used to represent a single
character.

noteS

Chap 8.indd 169 19-Jul-19 3:45:59 PM

Reprint 2025-26

170 InformatIcs PractIces – class XI

 student_id INT,
 gender CHAR(1),
 PRIMARY KEY (student_id)

);

a) What will be the degree of student table?
i) 30
ii) 1
iii) 3
iv) 4

b) What does ‘name’ represent in the above code snippet?
i) a table
ii) a row
iii) a column
iv) a database

c) What is true about the following SQL statement?
 SelecT * fROM student;

i) Displays contents of table ‘student’
ii) Displays column names and contents of table

‘student’
iii) Results in error as improper case has been used
iv) Displays only the column names of table ‘student’

d) What will be the output of following query?
INSERT INTO student
VALUES (“Suhana”,109,’F’),
VALUES (“Rivaan”,102,’M’),
VALUES (“Atharv”,103,’M’),
VALUES (“Rishika”,105,’F’),
VALUES (“Garvit”,104,’M’),
VALUES (“Shaurya”,109,’M’);

i) Error
ii) No Error
iii) Depends on compiler
iv) Successful completion of the query

e) In the following query how many rows will be deleted?
 DELETE student
 WHERE student_id=109;

i) 1 row
ii) All the rows where student ID is equal to 109
iii) No row will be deleted
iv) 2 rows

3. Fill in the blanks:
a) declares that an index in one table is

related to that in another table.
i) Primary Key
ii) Foreign Key
iii) Composite Key
iv) Secondary Key

b) The symbol Asterisk (*) in a select query retrieves
____________.
i) All data from the table
ii) Data of primary key only

noteS

Chap 8.indd 170 19-Jul-19 3:45:59 PM

Reprint 2025-26

IntroductIon to Structured Query Language (SQL) 171

MovieID MovieName Category ReleaseDate ProductionCost BusinessCost
001 Hindi_Movie Musical 2018-04-23 124500 130000

002 Tamil_Movie Action 2016-05-17 112000 118000

003 English_Movie Horror 2017-08-06 245000 360000

004 Bengali_Movie Adventure 2017-01-04 72000 100000

005 Telugu_Movie Action - 100000 -

006 Punjabi_Movie Comedy - 30500 -

a) Retrieve movies information without mentioning their
column names.

b) List business done by the movies showing only
MovieID, MovieName and BusinessCost.

c) List the different categories of movies.
d) Find the net profit of each movie showing its ID, Name

and Net Profit.
(Hint: Net Profit = BusinessCost – ProductionCost)
Make sure that the new column name is labelled as
NetProfit. Is this column now a part of the MOVIE
relation. If no, then what name is coined for such
columns? What can you say about the profit of a
movie which has not yet released? Does your query
result show profit as zero?

e) List all movies with ProductionCost greater than
80,000 and less than 1,25,000 showing ID, Name
and ProductionCost.

f) List all movies which fall in the category of Comedy
or Action.

g) List the movies which have not been released yet.
5. Suppose your school management has decided to conduct

cricket matches between students of class XI and Class
XII. Students of each class are asked to join any one
of the four teams — Team Titan, Team Rockers, Team
Magnet and Team Hurricane. During summer vacations,
various matches will be conducted between these teams.
Help your sports teacher to do the following:
a) Create a database “Sports”.
b) Create a table “TEAM” with following considerations:

i) It should have a column TeamID for storing an
integer value between 1 to 9, which refers to
unique identification of a team.

ii) Each TeamID should have its associated name
(TeamName), which should be a string of length
not less than 10 characters.

iii) NULL data
iv) None of the mentioned

4. Consider the following MOVIE database and answer the
SQL queries based on it.

Chap 8.indd 171 19-Jul-19 3:45:59 PM

Reprint 2025-26

172 InformatIcs PractIces – class XI

c) Using table level constraint, make TeamID as primary
key.

d) Show the structure of the table TEAM using SQL
command.

e) As per the preferences of the students four teams
were formed as given below. Insert these four rows in
TEAM table:
Row 1: (1, Team Titan)
Row 2: (2, Team Rockers)
Row 3: (3, Team Magnet)
Row 4: (4, Team Hurricane)

f) Show the contents of the table TEAM.
g) Now create another table below. MATCH_DETAILS

and insert data as shown in table. Choose appropriate
domains and constraints for each attribute.

h) Use the foreign key constraint in the MATCH_
DETAILS table with reference to TEAM table so
that MATCH_DETAILS table records score of teams
existing in the TEAM table only.

6. Using the sports database containing two relations
(TEAM, MATCH_DETAILS), answer the following
relational algebra queries.
a) Retrieve the MatchID of all those matches where both

the teams have scored > 70.
b) Retrieve the MatchID of all those matches where

FirstTeam has scored < 70 but SecondTeam has
scored > 70.

c) Find out the MatchID and date of matches played by
Team 1 and won by it.

d) Find out the MatchID of matches played by Team 2
and not won by it.

e) In the TEAM relation, change the name of the relation
to T_DATA. Also change the attributes TeamID and
TeamName to T_ID and T_NAME respectively.

7. Differentiate between the following commands:
a) ALTER and UPDATE
b) DELETE and DROP

Table: MATCH_DETAILS
MatchID MatchDate FirstTeamID SecondTeamID FirstTeamScore SecondTeamScore

M1 2018-07-17 1 2 90 86
M2 2018-07-18 3 4 45 48
M3 2018-07-19 1 3 78 56
M4 2018-07-19 2 4 56 67

M5 2018-07-20 1 4 32 87

M6 2018-07-21 2 3 67 51

Chap 8.indd 172 19-Jul-19 3:45:59 PM

Reprint 2025-26

IntroductIon to Structured Query Language (SQL) 173

8. Create a database called STUDENT_PROJECT having
the following tables. Choose appropriate data type and
apply necessary constraints.

Table: STUDENT
RollNo Name Stream Section RegistrationID

* The values in Stream column can be either Science, Commerce,
or Humanities.
* The values in Section column can be either I or II.

Table: PROJECT_ASSIGNED
RegistrationID ProjectID AssignDate

Table: PROJECT
ProjectID ProjectName SubmissionDate TeamSize GuideTeacher

a) Populate these tables with appropriate data.
b) Write SQL queries for the following.
c) Find the names of students in Science Stream.
d) What will be the primary keys of the three tables?
e) What are the foreign keys of the three relations?
f) Finds names of all the students studying in class

‘Commerce stream’ and are guided by same teacher,
even if they are assigned different projects.

9. An organization ABC maintains a database EMP-
DEPENDENT to record the following details about its
employees and their dependents.

EMPLOYEE(AadhaarNo, Name, Address, Department,
EmpID)
DEPENDENT(EmpID, DependentName, Relationship)

Use the EMP-DEPENDENT database to answer the following
SQL queries:
a) Find the names of employees with their dependent

names.
b) Find employee details working in a department, say,

‘PRODUCTION’.
c) Find employee names having no dependent
d) Find names of employees working in a department,

say, ‘SALES’ and having exactly two dependents.
10. A shop called Wonderful Garments that sells school

uniforms maintain a database SCHOOL_UNIFORM as shown
below. It consisted of two relations — UNIFORM and
PRICE. They made UniformCode as the primary key for
UNIFORM relation. Further, they used UniformCode and
Size as composite keys for PRICE relation. By analysing
the database schema and database state, specify SQL
queries to rectify the following anomalies.

Chap 8.indd 173 19-Jul-19 3:45:59 PM

Reprint 2025-26

174 InformatIcs PractIces – class XI

a) The PRICE relation has an attribute named Price. In
order to avoid confusion, write SQL query to change
the name of the relation PRICE to COST.

b) M/S Wonderful Garments also keeps handkerchiefs
of red color, medium size of `100 each. Insert this
record in COST table.

c) When you used the above query to insert data,
you were able to enter the values for handkerchief
without entering its details in the UNIFORM
relation. Make a provision so that the data can be
entered in COST table only if it is already there in
UNIFROM table.

d) Further, you should be able to assign a new UCode
to an item only if it has a valid UName. Write a
query to add appropriate constraint to the SCHOOL_
UNIFORM database.

e) ALTER table to add the constraint that price of an
item is always greater than zero.

UCode Size Price

1 M 500

1 L 580

1 XL 620

2 M 810

2 L 890

2 XL 940

3 M 770

3 L 830

3 XL 910

4 S 150

4 L 170

5 S 180

5 L 210

6 M 110

6 L 140

6 XL 160

UNIFORM

UCode UName UColor
1 Shirt White
2 Pant Grey
3 Skirt Grey

4 Tie Blue
5 Socks Blue
6 Belt Blue

PRICE

Chap 8.indd 174 19-Jul-19 3:45:59 PM

Reprint 2025-26

	keip1ps
	keip101
	keip102
	keip103
	keip104
	keip105
	keip106
	keip107
	keip108

